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Abstract In the uncoupled case this integral is evaluated using the 

We extended the ability of DEPOL [ 11 to calculate cou- homogeneous equation z” = -kZ~, substitution using this 

pled spin resonances and used it to determine the location equation allows us to exactly evaluate Eq. 5. This is the 

and strength of both intrinsic and coupled spin resonances primary algorithm used in DEPOL[ 11. In the case of linear 

in RJXC. In particular we are interested in the full res- coupling however the homogeneous equation is no longer 

onance structure with solenoidal elements turned on and valid for all the elements. So we proceed by block diag- 

with quadrupole roIls[2] onalizing the individual transfer matrices for the coupling 
element. Thus we hope to transform the z coordinate into 

1 MODIFICATION OF DEPOL 
ALGORITHM 

a basis where a new homogeneous equation is true. The 
technology to accomplish this has been already developed 
by Edwards and Teng[3]. Thus given an element with off 

Following the development of the DEPOL[ llalgorithm diagonal values in the 4x4 transfer matrix: 

which begins with the following general expression for res- 
onance: 
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Here A,B,C and D represent 2 x 2 submatricies which can 
where 5 = -(l+Gy)(pz”+iz’)+ip(lfG)(z/p)‘,Kis be used to develop a transformation which will block di- 
the resonance tune and 0 is the orbital bending angle, This agonalize Me (the subscripts e denote that only individual 
integral can be broken up into contributions from separate transfer matrices are being consider as opposed to the one 
magnets: turn transfer matrix): 
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Applying partial integration to this integral we can obtain 
an intermediate form: 
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where E are contributions due to edge focusing of the mag- 
net. Applying partial integration again so that we obtain: 
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Using Rewe can express x,pZ, z,p,in a locally uncou- 
pled basis a,~,, b,pb (the over bar on C indicates a sym- 
plectic conjugate): 

(i) =K( j-) (10) 
In this basis the homogeneous equations a” = -k,a and 
b” = -kbb will hold. We can determine k,and kbby con- 
sidering that from accelerator theory: 
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Thus k, = -*and lo, = -2. So to solve the 
e1.2 

integral in equation 5 we can write 2 =’ [rel,l a + r,,,,p, + 
b] & to obtain: 

I 
32 

Sl 
zeikeds = d&, (-r,,>, lr geiKeds a 

I 

-92 b" . 

I 

S2 
- -e 

kb 
zKeds + rel,2 a’eiKeds (12) 

$1 Sl 

Here we have substituted the homogeneous equation in 
for a and b and considered the normalized momentum 
pa M a’. Now using a integration technique similar to the 
original DEPOL[ l] paper: 
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we obtain a final closed expression: 
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Thus our final expression for the resonance contribution 
from each magnet element is: 
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Of course for those elements which are already block di- 
agonal we can neglect the local rotation to a diagonal basis 
and employ the original form: 
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for substitution into equation 5. 

2 IMPLEMENTATION IN CODE 

DEPOL derives its twiss parameters from MAD twiss 
output files and using them constructs the zi,aand z{,~ val- 
ues necessary to evaluate the resonance amplitude. How- 
ever when MAD evaluates the twiss values under condi- 
tions of linear coupling it employs Vl and V2 coordinates 
which correspond to the bloc diagonal basis for the one 
turn transfer matrix. To correctly evaluate the resonance 
strength we must transform back to the original basis to 
obtain x, ps , Z, pz. So in our code we read in values for the 
R matrix which is printed in the madout file, and use it to 
transform the Vl, Vl’, V2, V2’ back to the x, ps, .z,p, ba- 
sis. From here we can then implement equation 15 for each 
element. ’ 

There is an additional complication in the implemen- 
tation of this program which is an expression of the sub- 
tleties of equation 1. In the original DEPOL code implicit 
use was made of the properties of the enhancement func- 
tion which for Gr values on resonance yield the exact con- 
tribution to the resonance amplitude from one turn around 
all the elements in the accelerator lattice. However since 
we are dealing with a Fourier expansion in non-integer K 
values the actual integral in equation1 must go from minus 
infinity to plus infinity. When evaluating resonances due to 
linear coupling an integral only once around the lattice will 
yield a superposition of enhancement functions due to both 
vertical and horizontal tunes. In this case we are forced 
to integrate equation 1 over many passes to obtain a good 
approximation for the resonance strength. 

3 RESULTS FROM ANALYSIS OF THE 
AGS 

We initially looked at the effect of increasing solenoidal 
strength values for the partial snake in the AGS. We plot- 
ted resonance strength as a function of coupling strength 
c, = IAQmin 1 

ly,-v,I+~\/ly,--y,12+lAQmin12’ Compared to previ- 

ous approximations [4] we expect the slope to be approxi- 
mately equivalent to the original intrinsic resonance at that 
energy. As you can see from Figure 1 this is exactly what 
we found as we moved from 0% to 5% snake. 

Next we investigated the behavior of the resonance 
strength as a function of skew quad strength. Using the 
measured C,values and the resonance strength with zero 
skew quad field strength we constructed an approximation 
of the coupling resonance strength using [4]. As you can 
see in Fig 2 this approximation compares favorably with 
our results. Differences begin to set in when considering 
coupling elements which significantly alter the tunes and 
when considering very weak resonances where the periodic 
structure of the coupling can contribute to resonance calcu- 
lations. 
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Figure 1: Spin coupling resonances vs. C, for 36+~,,36- 
v,,12+v, and O+v,resonances. Where (36+~,)=0.01085, 
(36~v,)=O.O057, (12+~,)=0.0023 and (0+~,)=0.0062 

o.ow,, 36+w resonance vs. skew Quad strength 

Figure 2: 36+v,resonance strength vs. skew Quadrupole 
field strength with 5% snake.The straight line is the approx- 
imation [4] 

4 PRELIMINARY RESULTS FROM RHIC 

In RHIC the coupling elements originate from three pos- 
sible sources. Quadrupole rolls, solenoidal fields in the de- 
tectors and longitudinal fields in the snakes. Using pre- 
liminary values for the quadrupole rolls in the interaction 
region obtained from [2] we generated Fig. 3. In Fig. 4 we 
evaluated the Coupling spin resonances for the peak values 
for the solenoidal fields in the PHENIX and STAR detector. 

RHIC Coupled Spin Resonances 
With c?“adr”pole rolls only 

Figure 3: Modified DEPOL results on for Coupled Spin 
resonances on lattice with quadrupole rolls errors in inter- 
action regions 

RHIC Coupled Spin Resonances 
with Solenodla, meld* ‘mm ST.&R and PHENlX 
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Figure 4: Modified DEPOL results on for Coupled Spin 
resonances on lattice with solenoidal fields from PHENIX 
and STAR turned on 

bution to the Coupling spin resonance from a single snake 
element. While clearly the function of the snake is to elimi- 
nate resonances thus Fig 5 doesn’t give the whole picture it 
does provide a useful tool to better understand the strength 
and location of potential snake resonances. 

Figure 5: Modified DEPOL results on for Coupled Spin 
resonances on lattice with coupling from a single helical 
snake. 
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In Fig 5 using the transfer matrices obtained from actual 
field maps of the helical snakes [5], you can see the contri- 


